File: Classification-MatLab-ToolboxDownload  >Add to favorates  [Vote: very good!  5  4  3  2  1 Vote: very bad!]
  Directory: matlab
  Dev tools: matlab
  File size: 616 KB
  Update: 2006-10-28
  Downloads: 5138
  Uploader: zsq
 Describe: pattern recognition Matlab toolbox, including SVM, ICA, PCA, NN pattern recognition algorithms, and so on, of great reference value
File list(Click to check if it's the file you need, and recomment it at the bottom):
  Classification MatLab Toolbox
  About.bmp
  .............................\Ada_Boost.m
  .............................\ADDC.m
  .............................\AGHC.m
  .............................\Backpropagation_Batch.m
  .............................\Backpropagation_CGD.m
  .............................\Backpropagation_Quickprop.m
  .............................\Backpropagation_Recurrent.m
  .............................\Backpropagation_SM.m
  .............................\Backpropagation_Stochastic.m
  .............................\Balanced_Winnow.m
  .............................\Bayesian_Model_Comparison.m
  .............................\Bhattacharyya.m
  .............................\BIMSEC.m
  .............................\C4_5.m
  .............................\calculate_error.m
  .............................\calculate_region.m
  .............................\CART.m
  .............................\CARTfunctions.m
  .............................\Cascade_Correlation.m
  .............................\Chernoff.m
  .............................\chess.mat
  .............................\Classification.txt
  .............................\classification_error.m
  .............................\classifier.m
  .............................\classifier.mat
  .............................\classifier_commands.m
  .............................\click_points.m
  .............................\clouds.mat
  .............................\Competitive_learning.m
  .............................\Components_without_DF.m
  .............................\Components_with_DF.m
  .............................\contents.m
  .............................\decision_region.m
  .............................\Deterministic_annealing.m
  .............................\Deterministic_Boltzmann.m
  .............................\Deterministic_SA.m
  .............................\Discrete_Bayes.m
  .............................\Discriminability.m
  .............................\DSLVQ.m
  .............................\EM.m
  .............................\enter_distributions.m
  .............................\enter_distributions.mat
  .............................\enter_distributions_commands.m
  .............................\feature_selection.m
  .............................\feature_selection.mat
  .............................\Feature_selection.txt
  .............................\feature_selection_commands.m
  .............................\FindParameters.m
  .............................\FindParameters.mat
  .............................\FindParametersFunctions.m
  .............................\find_classes.m
  .............................\FishersLinearDiscriminant.m
  .............................\fuzzy_k_means.m
  .............................\GaussianParameters.m
  .............................\GaussianParameters.mat
  .............................\generate_data_set.m
  .............................\Genetic_Algorithm.m
  .............................\Genetic_Culling.m
  .............................\Genetic_Programming.m
  .............................\Gibbs.m
  .............................\HDR.m
  .............................\high_histogram.m
  .............................\Ho_Kashyap.m
  .............................\ICA.m
  .............................\ID3.m
  .............................\Infomat.m
  .............................\Interactive_Learning.m
  .............................\Kohonen_SOFM.m
  .............................\Koller.m
  .............................\k_means.m
  .............................\Leader_Follower.m
  .............................\LMS.m
  .............................\load_file.m
  .............................\Local_Polynomial.m
  .............................\LocBoost.m
  .............................\LocBoostFunctions.m
  .............................\loglikelihood.m
  .............................\LS.m
  .............................\LVQ1.m
  .............................\LVQ3.m
  .............................\make_a_draw.m
  .............................\Marginalization.m
  .............................\MDS.m
  .............................\Minimum_Cost.m
  .............................\min_spanning_tree.m
  .............................\ML.m
  .............................\ML_diag.m
  .............................\ML_II.m
  .............................\multialgorithms.m
  .............................\multialgorithms.mat
  .............................\multialgorithms_commands.m
  .............................\Multivariate_Splines.m
  .............................\NDDF.m
  .............................\NearestNeighborEditing.m
  .............................\Nearest_Neighbor.m
  .............................\NLPCA.m
  .............................\None.m
  .............................\Optimal_Brain_Surgeon.m
Please Comment: [Very Good!] [Commonly] [passworded] [Bad Descibe] [Not code/document] [lost file]  [Can't uncompress] [Very bad!] [Note]
 [Ivan]:Very Good [柳夏天]:Very rabbish [木子]:Very Good [丁江林]:Very rabbish [小伟]:Very Good [ZhangXX]:Very Good [张晓峰]:Very Good [空空小师f]:Very Good [wangwei]:Very Good [三将安排]:Very Good
 Search in more than 2705428 codes/documents:
 [specialFastICA.rar] - this code is uploaded on the main feature extraction algorithm : ica, better than the PCA
 [PCA_NN.rar] - PCA (Principal Component Analysis) algorithm has been widely used in engineering and science research, This report mainly from the PCA and the basic s
 [svm.zip] - matlab svm prepared by the source, can achieve a support vector machine for the feature classification or extract

 [data_handle_c.rar] - data processing and regression analysis, a large number of C-language source code, great reference value
 [pca2222222.rar] - PCA procedures, a principal component analysis procedures for the extraction of straight and you are welcome to download!
 [KPCAandPCA.rar] - contain pca and kpca algorithm, is very good in image processing the application
 [demo_svm.rar] - the procedures for an equivalent amount based on support for the graphic graphics processing the matlab demo program
 [K-junzhi.rar] - This is the K-means clustering algorithm, application fairly extensive, such as pattern recognition is important to Lane.
 [zncj.rar] - Intelligent Information automatic acquisition system. Can automatically download all kinds of news websites, the use of comparison
 [ldpca.zip] - Rate Adaptive LDPC matlab source files, to a foreigner, is very good.