Directory: matlab
Dev tools: matlab
File size: 38 KB
Update: 2010-01-06
Describe: matlab optimization process includes Non-binding one-dimensional extremum problems Advance and retreat method Golden Section Fibonacci method of basic Newton s method Newton s method Newton s Law of the global secant method parabola method acceptable to the three interpolation search method   Goidstein France Wolfe.Powell France Simplex search method Powell steepest descent method Conjugate gradient method Newton s method Newton s method to amend Quasi-Newton Method trust region method explicitly steepest descent method, Rosen gradient projection method Penalty function method outside the penalty function method within the penalty function method Mixed penalty function multiplier method   G-N was amended in G-N method L-M method Of linear programming simplex method, revised simplex method Big M method variables bounded simplex method, Cutting Plane Method integer programming branch and bound method 0-1 programming quadratic programming
File list(Click to check if it's the file you need, and recomment it at the bottom):
光盘程序
........\第10章 线性规划
........\...............\CmpSimpleMthd.m
........\...............\ModifSimpleMthd.m
........\...............\SimpleMthd.m
........\第11章 整数规划
........\...............\DividePlane.m
........\...............\IntProgFZ.m
........\...............\ZeroOneprog.m
........\第12章 二次规划
........\...............\ActivdeSet.m
........\...............\TrackRoute.m
........\第13章 粒子群优化算法
........\.....................\AsyLnCPSO.m
........\.....................\BreedPSO.m
........\.....................\CLSPSO.m
........\.....................\LinWPSO.m
........\.....................\LnCPSO.m
........\.....................\PSO.m
........\.....................\RandWPSO.m
........\.....................\SAPSO.m
........\.....................\SecPSO.m
........\.....................\SecVibratPSO.m
........\.....................\SelPSO.m
........\.....................\SimuAPSO.m
........\.....................\YSPSO.m
........\第14章 遗传优化算法
........\....................\DblGEGA.m
........\....................\GMGA.m
........\....................\myGA.m
........\....................\NormFitGA.m
........\....................\SBOGA.m
........\第6章 无约束一维极值问题
........\........................\minFBNQ.m
........\........................\minGS.m
........\........................\minGX.m
........\........................\minHJ.m
........\........................\minJT.m
........\........................\minNewton.m
........\........................\minPWX.m
........\........................\minTri.m
........\........................\minWP.m
........\第7章 无约束多维极值问题
........\........................\minBFGS.m
........\........................\minDFP.m
........\........................\minFD.m
........\........................\minGETD.m
........\........................\minMNT.m
........\........................\minNT.m
........\........................\minPowell.m
........\........................\minPS.m
........\........................\minRb.m
........\........................\minSimpSearch.m
........\........................\minTruA.m
........\第8章 约束优化问题
........\..................\minconPS.m
........\..................\minFactor.m
........\..................\minGeneralPF.m
........\..................\minJSMixFun.m
........\..................\minMixFun.m
........\..................\minPF.m
........\..................\minRosen.m
........\第9章 非线性最小二乘优化问题
........\............................\minGN.m
........\............................\minLM.m
........\............................\minMGN.m
 Please Comment: [Very Good!] [Commonly] [passworded] [Bad Descibe] [Not code/document] [lost file]  [Can't uncompress] [Very bad!] [Note] [汪代码]:Very Good [花建弼]:Very Good [张新科]:Very Good [chengzhang]:Very Good [ss]:Very Good [yangyang]:Very Good [Dorothy Zhu]:lost files [gaolin]:Very Good [吉州]:lost files [刘远]:lost files
Search in more than 2726348 codes/documents:
[PHR.rar] - Lagrange multiplier method for the solution of unconstrained optimization problem
[zuiyouhuashiyanbaogao.rar] - Using matlab to solve the problem of non-binding, there are the steepest descent method, Newton method, conjugate gradient method, variable metric met